μ子氢原子的里德伯常数介绍如下:

里德伯常数的值是1.097X10^7m^-1,这个常数的值当时是1.097X10^7m^-1,偏离当前精确值1.09737316 X 10^7m^-1只有0.2%,从而显示出他在这项探索中取得了惊人的成就。
里德伯原子的理论诠释
处在高激发态的氢原子是最简单的里德伯原子,它的一个电子通过库仑吸引力与质子相结合,产生一系列的能级:
E=-RHhc/n2
式中RH是氢原子的里德伯常数,h为普朗克常数,c为光速,n是主量子数,n=1,2,3,…等整数。能量为En的里德伯原子的大小用电子绕核运动的平均半径〈r〉n来描述,
〈r〉n=a1n2
这里a1是玻尔半径(见原子结构)。里德伯原子的寿命τn随n3而增加。

其他的原子,甚至分子也可产生里德伯态,只须用n*代替上式中的n,n*=n-μ,n*称为有效量子数,μ称为量子数亏损。如一个n=60的里德伯原子,它的半径〈r〉60≈190.0纳米,相当于一个病毒的大小,比基态的原子大了三个数量级。
这时它的结合能约为0.0038电子伏,要比在室温下粒子的热平动能(约0.025电子伏)小得多,而寿命却比低激发态寿命(10-9秒)长了3个数量级(10-6秒)。
原子的光谱一般在真空紫外、紫外及可见光区,而里德伯原子的高激发态间的跃迁可产生红外、微波及射频波,如n=630与640里德伯态间的跃迁产生26兆赫的射电波。如此巨大的原子很容易受到碰撞的影响而退激发,自然界只在气体密度极稀薄的宇宙空间才能观察到。
